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Abstract. A new type of percolation process, spiral percolation, is considered in which 
each step of a percolation path proceeds either straight or in a specific rotational direction. 
Monte Carlo simulation, assuming a finite-size scaling hypothesis, has been performed on 
the square lattice to determine the spiral percolation threshold p ,  and the correlation length 
exponent v,. The values obtained are p ,  = 0.730 * 0.004 and v, = 1.404 i. 0.012. 

Percolation is one of the most widely studied phenomena in recent times. Percolation 
theory has extensive applications and attempts are still being made to understand 
various aspects of the problem (Stauffer 1985). One such aspect relates to the effect 
of external constraints on the percolation process. The most well known example of 
this is that of directed percolation (see Kinzel (1983)) where a global directional bias 
confines the percolating cluster to a narrow cone with axis along the preferred direction. 
This leads to anisotropic scaling and  direction-dependent critical behaviour. The 
directed percolation problem is of considerable interest because it not only describes 
some real physical situations but also belongs to a universality class different from 
that for ordinary percolation. In this paper, we study the effect of another type of 
constraint, namely the spiralling constraint, on the percolation process. The spiralling 
constraint is effective if rotational force fields act on the system under consideration. 
The effect of such a constraint has already been studied in the case of self-avoiding 
walks (Privman 1983, Blote and Hilhorst 1984, Guttmann and Wormald 1984) and  
lattice animals (Bose and  Ray 1987) where significant changes in the walk or animal 
statistics have been found. In  the following, we first describe what we call the spiral 
percolation problem. We then present results of a Monte Carlo simulation study of 
the spiral site percolation problem on a square lattice. The results include the values 
of the percolation threshold probability p s  for spiral percolation and the correlation 
length exponent v s  with which the correlation length 6 diverges as the site occupation 
probability p + pl.  

We consider site spiral percolation on a square lattice in which the sites are randomly 
occupied with probability p .  As p is increased towards p c ,  the percolation threshold 
for ordinary percolation, the incipient infinite cluster of connected sites starts making 
its appearance. This cluster of sites is, however, not connected if the spiralling constraint 
is taken into account. Under this constraint, two points i and j of the cluster are said 
to be connected if there is at least one spiral path between them. In the spiral connecting 
path, each step is executed either in the direction of the preceding step or turns in a 
specific rotational direction, say clockwise. Figure 1 gives an  example of such con- 
nectivity, the bonds are labelled with arrow directions to trace out the spiral connections. 
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Figure 1.  An example of spiral site percolation on a square lattice. The arrows on the 
bonds indicate the allowed spiral directions of flow from site i. The open circles indicate 
singly-connected sites, and the full circles multiply-connected sites. The sites connected 
by the unlabelled bonds are not spirally connected to site i. 

The unlabelled bonds d o  not contribute to connectivity from site i. As the site 
occupation probability p is increased beyond p c  and reaches a threshold value p s ,  it 
is to be expected that at  this value spiral connection across the infinite cluster is just 
established. The value p s  is then identified with the percolation threshold probability 
for spiral percolation. For a clarification of the nature of spiral connection one should 
note the following: for a configuration of occupied sites there may be a spiral path 
from a site i to a site j but not from j to i (see figure 1). Also, if spiral connections 
exist between sites i and j and j and some other site k, it is not guaranteed that a 
spiral connection is present between i and k. In short, spiral connectedness is neither 
symmetric nor transitive. Consider a finite cluster (as in figure 1) in the configuration 
of occupied sites. Each site within the cluster is not spirally connected to every other 
one. One can only speak of the set IS,} of sites that can be reached spirally from a 
given site i. For spiral connection across the infinite cluster, there is at least one site 
i on the lower lattice edge whose set { S , }  contains a site j on the upper lattice edge. 

The distinguishing feature of the spirally-connected infinite cluster is the presence 
of a large number of loops. The loops constitute an essential feature since without 
them the infinite cluster will not be able to grow in all directions. Because of the loops, 
the percolating paths are much more tortuous than in the case of ordinary percolation. 
The spiral paths across the infinite cluster consist of both singly-connected and  multiply- 
connected sites, a singly-connected site (open circles in figure 1) if removed breaks 
connection between points i and j whereas removal of a multiply-connected site (full 
circles in figure 1) does not destroy connectivity. Also, loop sites which are singly- 
connected in the case of spiral percolation become multiply-connected if the spiralling 
constraint is removed. However, as in the case of ordinary percolation (Coniglio 1981), 
the number of singly-connected sites or bonds (for the bond percolation problem) in 
spiral percolation diverges, as p + p s ,  with an exponent of exact value 1. The proof 
of this rests on the identity (Coniglio 1981, Sykes 1984) p(dP, , /dp)  = L,],  where Pl, is 
the probability that sites i and j are connected and L,] is the average number of 
singly-connected sites or bonds between i and j .  The identity holds for any dimension 
and remains true when i and j are connected in the ordinary, directed or  even in the 
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spiral sense. The rest of the proof is straightforward (see Coniglio (1981) for details) 
and is valid for both directed and spiral percolation. 

For our Monte Carlo simulation study, we start with a finite square lattice of size 
L x L. The spiral percolation threshold p,(  L )  is determined by the binary search method 
(Hoshen and  Kopelman 1976). To begin with, the lattice sites are occupied with a 
certain probability p o  with the help of a random number generator. It is then checked 
whether there is a spiral connection from at least one site of the bottommost row of 
the lattice to at least one site of the topmost row. In brief, the checking for spiral 
connection is done in the following way. At any stage of checking, there are some 
sites which are ‘active’, i.e. those sites which have already been checked to be connected 
spirally to the site at the bottommost row and from which further spiral connections 
are to be examined. For any of these ‘active’ sites, say, A, information is available as 
to the directions along which it has been visited from its preceding sites. We next 
examine the neighbouring occupied sites of A which can be connected spirally to A. 
This is done for all the ‘active’ sites. For the new sites thus obtained, we store 
information as to the directions in which they have been visited from the ‘active’ sites. 
In the next stage of checking, these new sites are to be considered as ‘active’ and the 
process continues. A site can be visited only once from each different direction and 
information about all such visits is kept stored. Hence, if a site is revisited at some 
later stage of checking, the site becomes ‘active’ only if it is visited in a direction along 
which it has not been visited previously. The checking process ends in the case of 
either of two situations: if we reach the topmost row of the lattice, the lattice is said 
to be spirally connected, otherwise, the paths end up  within the lattice with no available 
sites for further spiral connection. The lattice is then not connected. If there is 
connection (no connection) pa is decreased (increased) by a small amount. The same 
random number sequence is then used to get estimates p , ( L )  and p z ( L )  which bound 
an  interval containing the true threshold value p ( L ) .  By successive binary chopping 
of this interval one determines p , ( L )  with the accuracy of 0.004. The whole process 
is then repeated N times ( N  x L x L is of the order of lo6) using different random 
number sequences. The average value ( p , (  L ) )  of all the estimates obtained is taken as 
an estimate for the percolation threshold. The spread in the estimates is related to the 
correlation length exponent v, through the finite-size scaling formula (Levinshtein et 
a1 1976, Reynolds et a1 1980) 

(1) 

We have obtained values for ( p , ( L ) )  and A ( L )  for lattices of size L x L with L ranging 
from 10 to 60, as listed in table 1. In  figure 2 we have plotted log(A-’(L)) against 
log L, which is a straight line. The slope of this straight line gives the reciprocal of 
the correlation length exponent, from which we obtain v, = 1.404i0.012. For ordinary 
percolation, the correlation length exponent v,) = !. Again, if the finite-size scaling 
hypothesis is valid, then one can write down the relation 

A( L )  = ( ( p t (  L ) )  - ( p , (  L ) ) 2 ) ‘  2 L - 1  ‘ 5 .  

I P J E )  -(p\W)l- L-l ’ \  (2) 

where p , ( c o )  is the percolation threshold probability in the limit of an  infinitely large 
lattice. In figure 3, we have plotted ( p , ( L ) )  against L-I ‘ 5  using the value already 
obtained for v5. The plot is almost a straight line and we obtain the value of 
p , ( a )  = 0.73010.004. The value p 5  is greater than the value p c  of the percolation 
threshold in case of ordinary percolation. This is to be expected since, as explained 
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Table 1. Monte Carlo results of ( p , (  L ) )  and  A (  L )  for all L x L lattices and  over N 
realisations. 

10 
15 
20 
25 
30 
35 
40 
45 
50 
60 

10 000 
5 000 
2 500 
2 000 
2 000 
1500 
1500 
1000 

800 
600 

0.697 ?66 
0.713 385 
0.716 923 
0.721 589 
0.715 611 
0.7 18 273 
0.717 412 
0.721 491 
0.720 238 
0.719 775 

0.080 879 
0.059 512 
0.049 403 
0.041 851 
0.037 098 
0.033 117 
0.030 244 
0.037 796 
0.025 623 
0.022 134 

I I 

10 1.4 1.6 1 8  
Log L 

' O L  ;2 

Figure 2. A plot of -log A(  L )  against log L for square lattices of size L x L. The slope of 
the straight l ine gives U,= 1.404r0.012.  

before, any connection between sites i and j of the infinite cluster does not guarantee 
spiral connection between them but the reverse is always true. 

The difference in the values of the correlation length exponents v, and vo for spiral 
and ordinary percolation suggests that percolation under a spiralling constraint may 
belong to a new universality class. To make a definite statement, much larger lattice 
sizes should be considered as there might be considerable deviations from the results 
obtained due  to systematic (size-dependent) contributions. Such systematic errors have 
not been taken into account in the error bars quoted for the values of v, and p s .  On 
the other hand, a finite-size scaling hypothesis for ordinary percolation seems to apply 
in the case of spiral percolation also. As has been mentioned before, the spiralling 
constraint has a non-trivial effect on both self-avoiding walk and  lattice animal prob- 
lems. For spiral lattice site animals, it has been shown (Bose er a1 1987) that animals 
and trees (animals without loops) belong to different universality classes, i.e. loops 
have a non-trivial effect on the animal statistics. This result is contrary to the result 
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obtained in the case of ordinary lattice animals (Gaunt et a1 1982, Duarte 1985). It 
is to be expected that loops also play a vital role in the spiral percolation process and 
a study of the loop-size distribution function and  other loop properties should be of 
definite interest. A more detailed study of the spiral percolation problem is in progress 
and the results will be reported elsewhere. 
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